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CONTOR: A FORTRAN Subroutine to Plot Smooth Contours 

of a Single-Valued Arbitrary Three-Dimensional Surface* 

EDWARD L. ROBINSON, JR.+ 
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AND 
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Department of Applied Mathematics and Theoretical Physics, 
University of Cambridge, Cambridge, England 

A fast, easy-to-use, accurate FORTRAN subroutine for smoothly contouring an 
arbitrary threedimensional surface is described. Practical use of the subroutine is 
discussed, and a sample complicated set of level curves drawn by the subroutine is 
presented. 

The fast accurate automatic contouring of an arbitrary three-dimensional single- 
valued surface is often desired in mathematical physics. In this article, an accurate 
FORTRAN subroutine for the fast smooth plotting of desired contour elevations 
is described. 

PROGRAM THEORY 

The contour subroutine assumes a single-valued function of the form w  = f(x, v) 
defined on the rectangle (xmin < x < x max ; Ymin < y < ymax). The function is 
held in the computer in the form of a two-dimensional array w~,~ = f(xi , vi), 
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where xi = Xmin + (nz - 1) A, , yi = ymin + (n, - 1) A, ) and (1 G G d Nz ; 

1 < n, < N,) with N, and N, being the total number of grid points of even spacing 
~,=(xrnax- xmin)/(Nz - 1) = Xi - X&l) and A, = (,Ymax - vmin)/(Ny - 1) = 

yj - Y(~-~) in the x and y directions, respectively. The program draws smooth 
curves of constant height w  through the rectangular array w~,~ and consists of three 
major parts: (i) subroutines which set up the plotter logic and scale factors, and 
which draw and label a set of axes and a grid for the plot; (ii) subroutines which 
find successive points through which a contour passes, and which decide whether 
a contour is open or closed; and (iii) subroutines which interpolate and draw a 
smooth curve through these points. 

(i) Theplotter set-up subroutines. The plotter set-up subroutines are concerned 
with global bookkeeping duties, such as the exact description of the plotter rectangle 
physical dimensions in terms of actual scale values by means of a calculation of 
appropriate scale factors, and the setting up of the many internal logic options 
which determine such things as letter size, possible grid plotting, and labeling of 
contours. Once these controlling parameters are defined, if desired by the user, the 
program then draws the coordinate axes with the optional labels and tick marks, 
and can draw one of several types of grids over the plotting surface. Further 
details of the straightforward working of this portion of the program can be found 
in comment statements in the subroutine listing. 

(ii) The ContourJinding subroutines. The basic structure of the contour finding 
subroutines is determined by the possibility of more than one relative maximum 
occurring in w~,~ , which could give rise to several disjoint and highly convoluted 
curves at a given contour level w. Therefore, the routine must (1) examine the 
complete array wi,j at each contour level so that all curves are found, (2) remember 
the position of all previously found and plotted curves so that the curves are not 
repeatedly redrawn, and so that individual curves are not confused with each other, 
(3) find successive points along a contour and keep them in their proper order so 
that complicated contours are drawn correctly, and (4) have some means of 
deciding when all points in a contour curve have been found, and whether the 
curve is open or closed. 

Two methods are employed simultaneously to overcome these basically book- 
keeping difficulties. First, the array of points, w~,~, is conceptually divided up into 
rectangular blocks with the four corners w~,~, w~+~,~ , w~,~+~ , and ~~+~,~+r . Since 
the blocks are adjacent to each other, each point in the array is simultaneously a 
member of up to four blocks. In order to find a point from which to begin a con- 
tour curve, the blocks are successively scanned to see if a contour level lies between 
any two of the four points of the block. As soon as such a block is found, the 
exact position of the contour level on the edge of the block is found by quadratic 
polynomial interpolation. For blocks interior to the array w~,~, the interpolation 
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uses the two block points on the proper edge and the two adjacent exterior points 
on the extension of the proper block edge. The polynomial is required to have the 
value of w  at the two block points, and to minimize the sum of the squared residuals 
at the two exterior points. If the block is at a boundary or corner of the array wiaj 
and only one adjacent exterior point exists, the quadratic polynomial is required to 
have the value of w  at the two blocks points and at the exterior point. For the 
moment, the subroutine ignores the inside of the block and only finds a point 
along the side. Further interpolation will take place later when the curve is plotted. 
This gives a beginning point of the contour curve in the (x, y) plane. The subroutine 
must now find a nearby point which will extend the contour. The side on which the 
beginning point lies is also the side of an adjacent block. The adjacent block is 
examined to find a side other than the one already found through which the 
contour passes. The exact position of the contour level crossover point on this 
side is again found by interpolation, thus adding a second point in the (x, y) plane 
through which the contour passes. By continuing this procedure, successive points 
through which the contour passes are found. The points are stored in the order 
in which they are found and plotted when all the points on the curve have been 
found. 

The technique of interpolating in a rectangular grid of points is commonly used 
by other programs as well as this one [l-3]. The quadratic interpolation in the 
grid which is used here allows the use of a coarser grid of points and gives much 
improved results over linear interpolation, particularly in the neighborhood of 
saddle points in wi,j . Wahl [4] avoided the use of a grid altogether. Wahl plotted 
electron density contours in molecules and could calculate an analytic function 
which approximated the electron densities. Thus, he was able to calculate the 
position of the contours exactly by extending them ahead in the direction of the 
tangent to the contour, and then performing a differential correction to the new 
position by direct comparison to the original function. The disadvantage of Wahl’s 
method is that it must be reprogrammed for each new application. The contours 
plotted by Pfleiderer et al. [5] illustrate another difficulty with Wahl’s method. 
The large mass of experimental data which they plot cannot easily be approximated 
by an analytic function, so they used a regular rectangular grid. Electron 
density contours have also been plotted with our program [6]. The reader may wish 
to compare the plots by Conroy [6] and by Wahl [4] and decide for himself if 
there has been any loss by using a regular rectangular grid of points. 

The second method used for eliminating these bookkeeping difficulties involves 
setting up a separate memory array. Each element of this integer array is identified 
with a block in the array wi,i and, by means of a simple code, contains all the 
necessary information concerning previously found contours. In particular, each 
element tells whether or not any contour points have been previously found along 
an edge of the corresponding block. If any have been found, the total number of 
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points and their block side locations are also stored. For each contour level, the 
whole memory array is initially set to indicate that no contour points have been 
found. Whenever a contour point is found along the edge of a block, the corre- 
sponding element in the memory array is immediately recalculated to indicate that 
a point has been found and to indicate on which side it was found. Of course, the 
memory element which corresponds to the adjacent block must also be recalculated. 

The information in the memory array is used for two purposes. First, if a point 
is found, while scanning blocks to find a beginning point of a contour curve, then 
the memory array is checked to see if the point has previously been found. If it has, 
the point is ignored and the scanning process proceeds. In this way (with the 
exception of block corners to be explained later), a contour curve is only found and 
drawn once. Second, when extending a contour from block to block, the memory 
array is checked for previously found points in the new block. If such points are 
found, one of several alternatives will occur. The routine will first check all 
remaining sides of the new block for contour points. If one can be found which 
has not been previously used, the contour curve is simply extended in that direction. 
If no new points can be found, the subroutine checks to see if it is in the same 
block as the beginning point of the contour curve. If so, the contour curve is 
assumed to be closed, with the last point joining on to the beginning point. If it is 
not the beginning block, the contour curve is assumed to be open, and is then 
extended backwards from the beginning point until no further points can be 
found. Whenever a contour curve runs into the edge of the array Wi,j , it is assumed 
to be an open curve and is then extended backwards from the beginning point 
until no further new points can be added. A minor complication arises if a contour 
exactly passes through one of the corner points of a block. In this case the term 
“adjacent block” refers to the block which is diagonal to the first block, and which 
also contains the corner point. The memory method presently being used may 
cause parts of a contour which contain corner points to be redrawn once. How- 
ever, the curve will be exactly redrawn so that the user will not be able to detect 
that the process has occurred without actually watching the plot being made. 

(iii) The contour interpolation and plotting subroutines. As soon as all points 
on a contour curve have been found, a smooth curve is interpolated between the 
points and then plotted. The choice of an interpolation algorithm is severely limited 
by two properties of many contours. First, in attempting to interpolate with a 
function of the form y = g(x), in many cases g(x) is found to be multiple valued, 
and will have points where the first derivative with respect to x is infinite. Second, 
contours can have segments of very small radii of curvature. This occurs partic- 
ularly in the neighborhood of saddle points in w~,~ . Interpolation schemes such as 
polynomial interpolation are obviously inappropriate because of the first property. 
Furthermore, an adequate fit to sharp (high curvature) curves requires a high degree 
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polynomial. Unfortunately, an exactly determined high degree polynomial will 
often oscillate wildly between its determining points. Spline interpolation formulas 
[7] alleviate part of the problem by specifying the first and second derivatives at 
the points. However, they are still ruled out by the first property of contour curves. 
Also, spline interpolation tends to be slow on a computer. Accordingly, a new 
interpolation algorithm was developed for use in this program. 

Assume that an ordered set of points (xi , yi), i = 1, 2, 3, 4 is given, and define 
the following quantities 

Axi = xi+1 - xi , 

AY, = yi+l - yi (i = 1,2,3), (la, b, 4 

and 
Di = (Axi2 + AY:)~/~. 

The parametric equations of the three straight lines joining successive points 
are formed: 

a! 1 = @x,/W + ~2, 

A = (A~l/Ddt + ~2 3 

a2 = (Ax,P,P + ~2, 

B2 = (AY,/D,P + ~2 > 

~3 = @x3/D3P + X3 - (D2/D3)Ax3, 

83 = @~3/D3)f + y3 - (02/03)dy3 - 

The interpolated curve from (x2 , y2) to (x3 , y3) is then given by 

x = a,(1 - tlD2jn + a2+ a3(t/D2)n 

1 + CtlDz)” + (1 - tlD2Y ’ 

’ = 
80 - t/4? + B2 + &WW 

1 + (t/D,)” + (1 - t/D,)” ’ 

Pa, b, c, 4 e, f) 

Pa, b) 

where t, the independent parameter, runs from 0 to Dz and must have the same 
value when calculating the oli)s and &‘s as when calculating x and y. For the usual 
set containing more than four points, the set is broken up into appropriate groups 
of four successive points, and the algorithm is applied repeatedly. 

This algorithm is sufficient for closed contour curves. If, however, the contour 
curve is open, the end points must be handled somewhat differently. The simplest 
method and the method employed in the program, is to exclude one of the end 
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straight lines from the calculation of x and y. Thus, for the curve joining (x1 , JJJ 
to (xz , JJJ the reduced parametric equations are 

(da, b, c, 4 

The accuracy of any new interpolation scheme should be investigated. However, 
it must be understood that the consideratiions given at the beginning of this 
section are so overriding, that virtually any interpolation scheme which avoids 
these difficulties would be acceptable. Indeed, most contour programs simply give 
up here and draw straight lines between the points (xi , yi) [l, 3,4]. We believe 
that our algorithm represents a considerable improvement over a simple linear 
interpolation. The algorithm resists any but the simplest analytic investigation of 
its error properties, but it is exact in the sense that it passes through every point 
in the set (xi, JJJ. Also, the algorithm gives an exact fit to any function of the 
form y = a + bx, and it gives an exact fit to the equation x = a. 

Further analysis of its error properties must be done numerically. We have 
chosen to illustrate the algorithm by interpolating between points lying on the 
curve y = x2. Figure 1 is a diagram showing the interpolation process. The points 
(xi , JJ*), i = 1,2, 3,4 are (-1, l), (0, 0), (1, 1) and (2,4). The straight lines joining 
these points are given by Eqs. (2), and are plotted as solid lines in Fig. 1. The 
points (ai , /3J are also plotted for the specific value of t = 0.5 D, . The dotted 
line is the interpolated curve for IZ = 2.0. The maximum vertical deviation of the 
interpolated curve from the parabola is dy = 0.027 and occurs at x = 0.833. 
Therefore, on the scale in which Fig. 1 is drawn, the interpolated curve is indis- 
tinguishable from a parabola. It should be noted that for this case, the error in the 
fit with our interpolation scheme is an order of magnitude (9.3 times) smaller 
than the error with a linear interpolation. In practice, one usually plots contours 
on a scale such that the points (xi , JJJ appear considerably closer together than they 
appear on the scale of Fig. 1, so that the limiting factor in the accuracy is often 
the digital plotter. 

The value of n has several effects on the interpolated curve. The curve is every- 
where continuous for IZ greater than zero, but the slope of the curve will only be 
continuous for n greater than 1. As n increases, greater weight is given to (aa , fi2) 

58111012-6 
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FIG. 1. A plot of the example given in the text of y  = x2 and n = 2. The filled circles mark 
the points (xi , yi) i = 1, 2, 3,4 and lie on the parabola. Their coordinates are given in parentheses. 
The crosses mark the points (a, , pi), i = 1, 2, 3 for I = 0.5 D, . The solid lines are the straight 
lines defined by Eqs. (2). The dotted line is the interpolated curve. 

in the weighted average of Eqs. (3). Thus, as n increases, the interpolated curve 
approaches the straight line joining (x2 , yz) to (x, , JQ. By examining the errors 
in many examples such as the one just given, including cases intractable to ordinary 
interpolation methods, we have chosen n = 2.5 as giving generally excellent results. 
In the example given, n = 2.5 results in a maximum error of dy = 0.069, which 
would give a curve just barely distinguishable from the parabola on the scale of 
Fig. 1. 

PROGRAM DESCRIPTION 

The contour program is compiled as a FORTRAN subroutine named CONTOR. 
Once the subroutine argument list is externally prepared, only one call to CONTOR 
is required per contour plot. The subroutine argument list is too long to include 
here, but is well documented in the actual FORTRAN source program listing 
appearing in the dissertation by Scarton [S, pp. 623-6541. Also appearing in this 
work are additional information concerning the data structure [S, pp. 588-5901, 
a listing of a general program PLTCR which uses CONTOR [S, p. 664 and 
pp. 668-6721 for an arbitrary w$,~ , and a typical running data deck for PLTCR 
[S, p. 7531. PLTCR is easily changed to suit individual contour requirements. 
CONTOR is designed using the Calcomp 663 incremental xy-plotter FORTRAN 
subroutines. The program can be easily adapted to other equivalent systems. 
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POSSIBLE DIFFICULTIES AND THEIR SOLUTIONS 

Since w  is only sampled at a finite number of discrete points, several difficulties 
with CONTOR may be encountered. To begin with, a completely disarranged 
and confused contour map, with many contour lines crossing over one another, 
may be drawn. This behavior is usually the fault of a very coarse grid which is 
trying to draw curves with a radius of curvature of the order of the grid spacing Di, 
Eq. (Ic), and is remedied by increasing the number of grid points until well-behaved 
level curves are constructed. When many changes in curvature occur on the bound- 
ary, the boundary needs to be extended for an adequate description of that region. 
A well-behaved surface, except for a few isolated regions, is again a fault of the 
ripple radius of curvature of the contour becoming the order of Di . This distortion 
of the contour map may occur near a saddle point, for example. If the behavior 
of the surface in these isolated regions is desired, then a separate localized resolved 
and magnified plot will have to be constructed. A very flat surface with a sudden 
spike or hole (or narrow ridge or valley) is difficult to handle and often such regions 
may be missed entirely if the location of the surface anomaly is situated further 
away from a grid point than the average width of the anomaly. This sort of problem 
is cured by experimentation with the various function parameters, and grid size, 
until this anomaly is fortuitously discovered and resolved and magnified. If no 
contours are drawn on the plot, the desired contour elevations are either too high 
or too low. 

AN EXAMPLE 

A sample of a complicated three-dimensional surface is provided from the field 
of guided acoustic waves in viscous compressible liquids [8, Chapter III 9, 111. 
The magnitude of the dispersion relation from this problem is given by the absolute 
value of the complex function 

E(k, , ki) = 1 MA $; - k2 $$f# I, 
0 0 

where 

M= k2+ 
[ 

F2 
I 
112 

1 +j$FD ’ 

and 

A = [k2 -j+]1’2, (8) 

with the dimensionless frequency F and viscosity D being positive real parameters, 
k being the complex wave number k = k, + jk, (j = m), and Jo and J1 being 
ordinary complex Bessel functions of the first kind and of zeroth and tist order. 
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Equation (6) is ideally suited for contouring and is shown in Fig. 2 with the abscissa 
k, extending from -2.0 to 14.0 and the ordinate ki extending from -1.5 to 6.5. 
The grid spacing used is dlc, = LI,~ = 0.4, which allows for 41 grid points in the 
k,-direction and 21 points in the k,-direction. The contour elevations increase 
logarithmically in height starting with the contour number 2 height of 1.0, with 

5.0 

0.0 

0.0 5.0 10.0 

kr 

FIG. 2. Contour plot of Eq. (6) with Ax = A, = 0.4, Nk = 41, Nk. = 21, F = 0.5, and 
D = 0.01. (The numbered contour elevatioks extehd logarithkcally fro& contour number 2 
with the value of 1.0.) 

successively higher elevations of 2, 3 ,..., 9, 10, 20 ,..., 90, 100, 200, etc. The values 
of F and D are 0.5 and 0.01, respectively. In the figure both spikes S [in this case 
actual poles of E(k, , kJ] and valleys V (where the function is identically zero) are 
handled quite well, with the exception of the small circular contours (radii of 
curvature less than 0.2) near S and V which have become slightly distored because 
of the coarseness of the grid size (0.4) selected. The contours away from these 
irregular regions, and also the several saddle points SP, are very nicely drawn. 
The total on-line computer time on a Univac 1108 digital computer (0.75~ set add 
time) required to produce this plot (which includes the calculation of 3,444 complex 
Bessel functions [lo], but does not include off-line plotter time) was two minutes. 
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